A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism.
نویسندگان
چکیده
Processes of intestinal absorption, metabolism, and secretion must be considered simultaneously in viewing oral drug bioavailability. Existing models often fail to predict route-dependent intestinal metabolism, namely, little metabolism occurs after systemic dosing but notable metabolism exists after oral dosing. A physiologically based, Segregated-Flow Model (SFM) was developed to examine the influence of intestinal transport (absorption and exsorption), metabolism, flow, tissue-partitioning characteristics, and elimination in other organs on intestinal clearance, intestinal availability, and systemic bioavailability. For the SFM, blood flow to intestine was effectively segregated for the perfusion of two regions, with 10% reaching an absorptive layer-the enterocytes at the villus tips of the mucosa where metabolic enzymes and the P-glycoprotein reside, and the remaining 90% supplying the rest of the intestine (serosa and submucosa), a nonabsorptive layer. The traditional, physiologically-based model, which regards the intestine as a single, homogeneous compartment with all of the intestinal blood flow perfusing the tissue, was also examined for comparison. The analytical solutions under first order conditions were essentially identical for the SFM and traditional model, differing only in the flow rate to the absorptive/removal region. The presence of other elimination organs did not affect the intestinal clearance and bioavailability estimates, but reduced the percentage of dose metabolized by the intestine. For both models, intestinal availability was inversely related to the intrinsic clearances for intestinal metabolism and exsorption, and was additionally affected by both the rate constant for absorption and that denoting luminal loss when drug was exsorbed. However, the effect of secretion by P-glycoprotein became attenuated with rapid absorption. The difference in flow between models imparted a substantial influence on the intestinal clearance of flow-limited substrates, and the SFM predicted markedly higher extents of intestinal metabolism for oral over i.v. dosing. Thus, the SFM provides a physiological view of the intestine and explains the observation of route-dependent, intestinal metabolism.
منابع مشابه
Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption.
Recently, a physiologically-based, segregated flow model that incorporates separate intestinal tissue and flow to both a nonabsorptive and an absorptive outermost layer (enterocytes) was shown to better describe the observations on route-dependent morphine glucuronidation in the rat small intestine than a traditional physiologically-based model. These theoretical models were expanded, as the se...
متن کاملMetabolite Kinetics: The Segregated Flow Model for Intestinal and Whole Body Physiologically Based Pharmacokinetic Modeling to Describe Intestinal and Hepatic Glucuronidation of Morphine in Rats In Vivo.
We used the intestinal segregated flow model (SFM) versus the traditional model (TM), nested within physiologically based pharmacokinetic (PBPK) models, to describe the biliary and urinary excretion of morphine 3β-glucuronide (MG) after intravenous and intraduodenal dosing of morphine in rats in vivo. The SFM model describes a partial (5%-30%) intestinal blood flow perfusing the transporter- an...
متن کاملCommentary: theoretical predictions of flow effects on intestinal and systemic availability in physiologically based pharmacokinetic intestine models: the traditional model, segregated flow model, and QGut model.
Physiologically based pharmacokinetic (PBPK) models for the intestine, comprising of different flow rates perfusing the enterocyte region, were revisited for appraisal of flow affects on the intestinal availability (F(I)) and, in turn, the systemic availability (F(sys)) and intestinal versus liver contribution to the first-pass effect during oral drug absorption. The traditional model (TM), seg...
متن کاملA new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model.
This study aimed to construct a new local pharmacokinetic model of gastrointestinal absorption, the translocation model (TLM), using an anatomically relevant, minimally segmented structure to explain linear and nonlinear intestinal absorption, metabolism, and transport. The TLM was based on the concept of a single absorption site that flexibly moves, expands, and shrinks along with the length o...
متن کاملPhysiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2000